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Optical shock waves in media with quadratic nonlinearity
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We report the existence of optical shock waves in quadratic media with complex dispersion. By using a
truncated Painleve method it is analytically shown that the second harmonic and fundamental fields can
propagate into the unexcited region as a mutually trapped two-field shock wave. The conditions for the
existence of this solution are determing81063-651X98)51410-9

PACS numbg(s): 42.65.5f, 03.40.Kf

An important tendency in contemporary studies on non- In what follows we assume thdd,,=D;,+iD7, are
linear optics is related to quadratic g nonlinearites complex valued. For example, Eq4) with C'omple>’<D1Y2
which are believed to possess a high potential in all-opticatiescribe the mean fields evolution in the system with fluctu-
signal processing, amplification, transistor action, generatioating group velocities; ;=K ,= (v1 3)o+ 712, Where pa-
of nonlinear phase shifts, pulse compression, @ee, €.9., rametersy, ,(x) are the fluctuations of harmonic’s recipro-
[1,2] and references thergin cal group velocities. In the case when,(x) are &

Many realistic physical systems exhibit inherent lossesorrelated random Gaussian procesgeg X1) 71.AX2))
and/or gain that cannot be neglected in describing the wave 202 ,8(X,—X,), here(. . .) stands for the statistical aver-
dynamics (propagation and interactibn These dissipative aging, application of the Furutsu-Novikov formula1] to

systems can be frequently described by partial differentiaje ayeraged governing equations leads to the expression
equations with complex coefficients. Prominent examples argy» _

) . o : 112——052. Other spectacular examples of the systems
the Ginzburg-Landau equatid@LE) and its different modi- with complex D are those with spectral filtering or

fications. Different types of solutions to the GLE, such asy,nqyigth-limited amplificatiorig]. For real dispersion and

splitonlike_ inpluding algebraic ones, shocklike, So‘ﬁrcesvanishing linear losse&gain Egs. (1) simplify to the well-
sinks, periodic, etc. have been demonstrated and their proRy,gieqd limit. Different types of localized solutions to this

erties were analyzed systematicdlB~9]. These studies ex- system, namely, bright, dark, and semidark have been dis-

clusively dealt with cubic and quintic rather than quadratic,,sseq lately in the literatuf@2,13. However, the existence

media. To date solutions in nonconservative systems COV&{s he solutions to systerfl) with complex coefficients has
only the former case, being merely a limiting case of much,: peen reported to the time.

richer x(?) phenomena. The latter have a wide significance T4 find the solutions to systefd) we apply the so-called
beyond optics as well. Rapid progress in material scienceg ncated Painleve expansion metHad]. An application of
permits one to manufacture molecular crystals with the neWpis method to GLE and to quartic nonlinear Salirger
properties. For instance, dynamics of excitations in organieqyation(NLSE) can be found elsewhef@5]. The Painleve

crystalline superlattices that are constructed from m°|eCU|e§pproach is based on the assumption that some of nonlinear
demonstratmg Fern_w-resonan.ce is described by eq”at'or?e?quations possess the formal solutions of the form
equivalent to those in quadratic optical mefild].

In this Rapid Communication we will show that a shock- o
type solution previously known in cubic media exists in the U, =0 u(x,t)d, )
case ofy(® nonlinearity, too. Here, two coupled fields of the =0

fundamental wavéFW) and the second harmon{§H) are
involved. We derive an analytical solution and define thewhere «<0 is the leading order power coefficient,(x,t)
criteria of its existence. are expansion coefficients that are analytic in the neighbor-
The system of equations describing wave propagation in &ood of the noncharacteristic singular manifdkdx,t) =0
dispersive quadratically nonlinear medium has the form  [16]. The Painleve analysis allows one to investigate the in-
tegrability of differential equations, to systematically con-
(At 0A) +(Ky+iy))A+D 1A+ 2I'A*B=0, (18  struct the Lax pair and the Bklund transformation as well
as the Hirota bilinear representation. In recent pap&vs-
i(By— 6By + (ko +ivy,)B+D,B,+T'A%2=0, (1b)  20] this approach was applied to study the coupled system of
Maxwell-Bloch and Hirota equation4.7], higher-order non-
wherex is the propagation distanceis the retarded timed  linear Schrdinger equation that includes third-order disper-
and B are normalized envelopes of the first and the secondion, self-steepening and self-frequency shifting via stimu-
harmonics,y; , are linear gain or loss coefficients, , are  lated Raman scattering terri$8,19, and coupled systems
dispersion coefficientsy=k,— 2k, is the phase mismatch, of equations describing the pulse propagation in quadrati-
ky, are the wave numbers at two frequenci@ss the walk-  cally nonlinear media accounting for third-order dispersion
off parameter, and is the nonlinear coefficient. and self-steepening effedt&0].
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As shown in[14] the information about the Lax pair and a=apdZexfieo+ie(x,t)],

the Baklund transformation for integrable system can be

deduced by using the expansig¢®) truncated at the term b=bo®2exf i p,+2i o(x,1)], (9)

with j=—«a. Moreover, by substituting the truncated Lau-

rent serieq2) into the governing equation one can find par- az=[2(D;D,—D’D}%)(e*—20e2+9)

ticular solutions both in integrable and in nonintegrable cases

[14,15. Here we take advantage of this approach. +15D;D5+D1D)(3e—&%)]IT?,
We suppose that the solution to E@$) has a singularity (10)

at complex values df andx along the curveb(x,t)=0. For b3=|D4|?(e*+ 132+ 36)/4T"2,

realx andt, the functiond(x,t) is real, too. Looking for the

leading order power coefficients of the two fields we substi- D](6—¢?)—5D}e

tute tad¢2_2¢1): Di(6_82)+5Dg_8 . (11)

A=ad® B=bd~s (3) Thus, Egs.(10) and (11) determine the amplitudes and the

constant part of the relative phase difference of the two
into Eq. (1), and upon balancing the dominant terms andfields.

collecting the coefficients of the leading powerdfx,t) we Now to find functionse(x,t) and ®(x,t) we have four
can conclude that Egs.(6) and(?): Substitution of Eq(9) into Eq.(6) leads(i)
(i) The parameters, B8 are complex valued, to the expression for the phase
X,H)=pu In &+ @g(X),
a=—2+ig, B=-2+2ig; (4) P(X,t)=p t+ @o(X)
(12
w=5D}/2D",
(i) The parameters and the coefficientsa(x,t) and
b(x,t) are determined by the following equations: wherey(X) is an arbitrary function that will be determined
later; (ii) to the condition of compatibility of Eq96a and
a(a—1)D;ad2+2Ta*b=0, (59 (6D),
2D}/Dy=D,/D%; (13)
B(B—1)D,bd2+Ta?=0. (5b)
and (iii) to two equations forb(x,t),
Then substituting the seri€®) truncated af =2 and collect- D"(d.+ 5B.)+5/D.|2P.=0 14
ing the coefficients of different power @b(x,t) we obtain 1(Px 0+5|D[*Py =0, (149
a rather complicated set of equations i(x,t), a;, b; DZ(¢X—5¢t)+5|Dz|2q’n=0- (14b)

(j=0,1,2). However, this system of equations permits a spe-

cial solution witha;j=b;=0 for j=1,2. Below we analyze Before analyzing the solutions of the systéh#) we con-
this case. sider the equations that are consequences of the sy3jem
The procedure described above leads to the following sesubstituting Eq(9) into Eq. (7) we arrive at
of equations:
(kg +iy1— @0 )7 +Dy(1+ip)(2+ipn)f

i(dy+6P)a+D4(28,P;+ady;) =0, 6 ,
i(Dy t) 1(2a; P, tt) (6a) _2D1(2+|;u)2q)tq)ttt:01 (153
i(Py— 6Py)b+Dy(2b P +bdy) =0, (6b) (ko1 y2= 200 ) P +2Dp(1+ip)(1+2i u) D
i(a,+ da,)+ (k;+iy,)a+Djag=0, (73 —8Dy(1+ip)?® Dy =0. (15b)
. . Introducing the new functiofr =®,,/®, it is easy to show
i(by—6by) +(ky+iy2)b+Dyby =0, (7b)  that Eq.(159 has a solution of the form

which together with Eq(5) represent an overdetermined sys- D(x,t)=cy(x) +ca(x)e", (16)

tem to be solved. Similar to Eq3), in Egs.(6) and (7) we

have omitted the subscript 0 farandb. whereF is a constant determined by the imaginary part of

The analysis of Eq(5) shows that the parameter is Eq. (153,
determined by the fourth-order algebraic equation F2=4y,D/(25D,|>~ D{2)>01 (17)
2(D;D%+D,D})(e*—20£2+9) whereas the real part of E¢L53 gives
+15D;D;—D’D3)(°~3¢)=0, tS) e=Q1X,

— ’ 2 "2 " 2_nr2
whereas for the functiona andb we obtain the following Qu=ky+71D1(25D;*+D7%)/D3(29D,[*~ 7).
expressions: (18
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The compatibility condition of Eqg.158 and (15b) yields

y,D7(25D,|2—D%%) = y,D5(25D,|>*~D7?), (19
K ok _DéFZ 25 |D2|2 |Dl|2 +D” " 20
2 1= 4Dlzr D/Z/ Dljl_ 2 1> ( )

where relation(13) was used.

Now we come back to Eq14). Substituting Eq(16) into
Eqg. (14) we find that the common solution to Eq44) and
(15) has the form

d(x,t)=Cco+ceFt V), (21)

wherecy andc are constants, which can be equalized by a

proper choice of the reference pointg andt,, and

V™~ 1=(5F|D,|?+ 8)/D = (5F|D,|?— 8)/D5. (22

The second equality in Eq22) arising from the compatibil-
ity condition for Eqs(14a and(14b) shows that the solution
exists if the condition

5=5F(Dj|D,|>*~D}|D,|?)/(D4+D} (23

holds. By using Eq(23) the expression for velocit{22) can
be rewritten in the form

VTI=5F(|D 2+ [DyP/(D5+DY. (29

For zero walk-off instead of Eq23) an additional relation
for coefficientsD, ,,

D1|D,|*=Dj|Dy|? (25
emerges. Eventually the solution of the systétnis given
by

A:AO[1+ e—F(t—X/V)]—2+isei(gt—QX)+i<pl’

B= BO[1+ e—F(t—X/V)]—2+2i862i(ﬂt—QX)+igo2
(26)

where Ag=agF?, By=boF?, Q=(u+e)F, Q=Q,
+ (u+e)F/V, parametersy, by, F, Q,, andV are given
by expressiongl10), (17), (18), and(22), respectively. Thus
Eq. (26) represents the solution of systdf) with fixed val-
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FIG. 1. Evolution of the shock wave. Amplitude of the funda-
mental waveA is shown, while the SH field demonstrates a similar
behavior.

cally obvious condition because the system has to exhibit a
balance between gain and losses to sustain a stationary solu-
tion.
The second comment is that E@) in general can have
up to four real solutions. If they are consistent with ELp)
one set of system parameters admits several coexisting
shocklike solutions.

Accounting for the relatiori13), Eq. (8) can be rewritten
as

2d(e*—20s%+9)+5(2d—1)(e3—3¢)=0, (27
whered=D;/D] . For instance, in the case=0.5 Eq.(27)

is reduced to a biquadratic equation and has four real solu-
tions: &=+[10+91]Y2 Analysis of Eq. (10) shows
that a3 =10D}D4(3s;—¢7)/T>>0 and therefore there
are two pairs of solutions withe;=—[10+91]*2 &,
=[10-\91]*? and 3= —[ 10— \91]2 £,=[10+ \91]*2

For the former case we have sB¥j{=sgnD3), while for the
latter sgnD7)=—sgn5).

Another particular case we consider here is the
dispersionless limitt=0. Then solutions to Eq27) aree;
=0, g55= =V3. For &;,=0 we haveaj,=—18D|D}/T?,

i.e., a solution exists provided that s@jj=-sgnD5),
while for e5 ;= 3, ag,= ag,=84D;D%/T'2, and two signs of
correspond to the coexistence of the two complex conjugate
solutions. Along with these relations, Eq$7)—(20) lead to
F2=1,/6D]=v,/6D}, Q,=Kk;, ko=2k;. The last equality
means that in the dispersionless limit solutions exist at zero
mismatch.

We have confirmed the results obtained by direct numeri-
cal simulations of the Eq.). In Fig. 1 the dynamics of the
shock wave is shown for the system parame@fs=D,
=0, D]=D35=0.1, 6=0, y;=v,=0.2, e=v3. A rather
stable propagation of the shock wave with amplitudes, rela-
tive phase, velocity, and shape described by the formulas

ues of velocity and amplitudes of both harmonics. It is clear(lo), (1), (24), and(26), respectively, is clearly seen.

that forF>0 in the limitt—x/V— — o both amplitudes tend
to zero, whereas in the limit—x/V—o we obtain nonzero
excitations,A—A,, B—B,. The solution(26) exists if the
parameters of systefi) satisfy the relation$l3), (19), (20),
and(23). Note that transformatiorts—t—ty, Xx—Xx—Xg, and
e1— 11T @, e2— @2t 2¢ in EQ. (26) leads to the solu-
tion of Eqg. (1) as well.

Now two comments are in order. As follows from Egs.

(17) and (19) the inequalitiesy, ,D7 >0 have to be satis-
fied. In other words, sgnf ;) =sgn0] ,), which is a physi-

In conclusion, we have analytically found the profile of a
shock front formed by the interaction of the fundamental and
the second harmonic waves in nonconservative quadratic
media. Due to mutual trapping the FW and the SH compose
a bound state and move with a common velocity even in the
case of nonzero walk-off. It is shown that for a set of param-
eters characterizing dispersive, nonlinear, dissipative, and
amplifying properties of the system several shocklike waves
can exist. An important problem that remains beyond the
scope of this Rapid Communication is the stability of the
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found solutions. Numerical calculations showed that at leasbbserved experimentally if long pulses with sharp fronts are
for particular set of the system parameters shock wavekunched in a dissipative quadratic medium.
propagate rather stable. A detailed analysis of the stability of

the shock waves, in particular, modulational instability of the

The authors acknowledge a grant from the Friedrich-

plane waves which are the asymptotic states of the solutionSchiller-University, Jena, and partial support from Grant
(26), will be considered elsewhere. Such shock waves can bios. 96-461(INTAS) and 96-0334049RFBR).
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