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Optical shock waves in media with quadratic nonlinearity
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We report the existence of optical shock waves in quadratic media with complex dispersion. By using a
truncated Painleve method it is analytically shown that the second harmonic and fundamental fields can
propagate into the unexcited region as a mutually trapped two-field shock wave. The conditions for the
existence of this solution are determined.@S1063-651X~98!51410-9#

PACS number~s!: 42.65.Sf, 03.40.Kf
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An important tendency in contemporary studies on n
linear optics is related to quadratic orx (2) nonlinearities
which are believed to possess a high potential in all-opt
signal processing, amplification, transistor action, genera
of nonlinear phase shifts, pulse compression, etc.~see, e.g.,
@1,2# and references therein!.

Many realistic physical systems exhibit inherent loss
and/or gain that cannot be neglected in describing the w
dynamics ~propagation and interaction!. These dissipative
systems can be frequently described by partial differen
equations with complex coefficients. Prominent examples
the Ginzburg-Landau equation~GLE! and its different modi-
fications. Different types of solutions to the GLE, such
solitonlike including algebraic ones, shocklike, sourc
sinks, periodic, etc. have been demonstrated and their p
erties were analyzed systematically@3–9#. These studies ex
clusively dealt with cubic and quintic rather than quadra
media. To date solutions in nonconservative systems co
only the former case, being merely a limiting case of mu
richer x (2) phenomena. The latter have a wide significan
beyond optics as well. Rapid progress in material scien
permits one to manufacture molecular crystals with the n
properties. For instance, dynamics of excitations in orga
crystalline superlattices that are constructed from molec
demonstrating Fermi-resonance is described by equat
equivalent to those in quadratic optical media@10#.

In this Rapid Communication we will show that a shoc
type solution previously known in cubic media exists in t
case ofx (2) nonlinearity, too. Here, two coupled fields of th
fundamental wave~FW! and the second harmonic~SH! are
involved. We derive an analytical solution and define t
criteria of its existence.

The system of equations describing wave propagation
dispersive quadratically nonlinear medium has the form

i ~Ax1dAt!1~k11 ig1!A1D1Att12GA* B50, ~1a!

i ~Bx2dBt!1~k21 ig2!B1D2Btt1GA250, ~1b!

wherex is the propagation distance,t is the retarded time,A
and B are normalized envelopes of the first and the sec
harmonics,g1,2 are linear gain or loss coefficients,D1,2 are
dispersion coefficients,q5k222k1 is the phase mismatch
k1,2 are the wave numbers at two frequencies,d is the walk-
off parameter, andG is the nonlinear coefficient.
PRE 581063-651X/98/58~4!/4120~4!/$15.00
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In what follows we assume thatD1,25D1,28 1 iD 1,29 are
complex valued. For example, Eqs.~1! with complex D1,2
describe the mean fields evolution in the system with fluc
ating group velocitiesn1,2

215k1,28 5(n1,2
21)01h1,2, where pa-

rametersh1,2(x) are the fluctuations of harmonic’s recipro
cal group velocities. In the case whenh1,2(x) are d
correlated random Gaussian processes^h1,2(x1)h1,2(x2)&
52s1,2

2 d(x12x2), here^ . . .& stands for the statistical aver
aging, application of the Furutsu-Novikov formula@11# to
the averaged governing equations leads to the expres
D1,29 52s1,2

2 . Other spectacular examples of the syste
with complex D are those with spectral filtering o
bandwidth-limited amplification@9#. For real dispersion and
vanishing linear losses~gain! Eqs. ~1! simplify to the well-
studied limit. Different types of localized solutions to th
system, namely, bright, dark, and semidark have been
cussed lately in the literature@12,13#. However, the existence
of the solutions to system~1! with complex coefficients has
not been reported to the time.

To find the solutions to system~1! we apply the so-called
truncated Painleve expansion method@14#. An application of
this method to GLE and to quartic nonlinear Schro¨dinger
equation~NLSE! can be found elsewhere@15#. The Painleve
approach is based on the assumption that some of nonli
equations possess the formal solutions of the form

u~x,t !5Fa(
j 50

`

uj~x,t !F j , ~2!

wherea,0 is the leading order power coefficient,uj (x,t)
are expansion coefficients that are analytic in the neighb
hood of the noncharacteristic singular manifoldF(x,t)50
@16#. The Painleve analysis allows one to investigate the
tegrability of differential equations, to systematically co
struct the Lax pair and the Ba¨cklund transformation as wel
as the Hirota bilinear representation. In recent papers@17–
20# this approach was applied to study the coupled system
Maxwell-Bloch and Hirota equations@17#, higher-order non-
linear Schro¨dinger equation that includes third-order dispe
sion, self-steepening and self-frequency shifting via stim
lated Raman scattering terms@18,19#, and coupled system
of equations describing the pulse propagation in quadr
cally nonlinear media accounting for third-order dispersi
and self-steepening effects@20#.
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As shown in@14# the information about the Lax pair an
the Bäcklund transformation for integrable system can
deduced by using the expansion~2! truncated at the term
with j 52a. Moreover, by substituting the truncated La
rent series~2! into the governing equation one can find pa
ticular solutions both in integrable and in nonintegrable ca
@14,15#. Here we take advantage of this approach.

We suppose that the solution to Eqs.~1! has a singularity
at complex values oft andx along the curveF(x,t)50. For
realx andt, the functionF(x,t) is real, too. Looking for the
leading order power coefficients of the two fields we sub
tute

A5aFa, B5bFb ~3!

into Eq. ~1!, and upon balancing the dominant terms a
collecting the coefficients of the leading power ofF(x,t) we
can conclude that

~i! The parametersa, b are complex valued,

a5221 i«, b52212i«; ~4!

~ii ! The parameter« and the coefficientsa(x,t) and
b(x,t) are determined by the following equations:

a~a21!D1aF t
212Ga* b50, ~5a!

b~b21!D2bF t
21Ga250. ~5b!

Then substituting the series~2! truncated atj 52 and collect-
ing the coefficients of different power ofF(x,t) we obtain
a rather complicated set of equations forF(x,t), aj , bj
( j 50,1,2). However, this system of equations permits a s
cial solution withaj5bj50 for j 51,2. Below we analyze
this case.

The procedure described above leads to the following
of equations:

i ~Fx1dF t!a1D1~2atF t1aF tt!50, ~6a!

i ~Fx2dF t!b1D2~2btF t1bF tt!50, ~6b!

i ~ax1dat!1~k11 ig1!a1D1att50, ~7a!

i ~bx2dbt!1~k21 ig2!b1D2btt50, ~7b!

which together with Eq.~5! represent an overdetermined sy
tem to be solved. Similar to Eq.~3!, in Eqs.~6! and ~7! we
have omitted the subscript 0 fora andb.

The analysis of Eq.~5! shows that the parameter« is
determined by the fourth-order algebraic equation

2~D18D291D28D19!~«4220«219!

115~D18D282D19D29!~«323«!50, ~8!

whereas for the functionsa and b we obtain the following
expressions:
s

i-

d

e-

et

a5a0F t
2exp@ iw11 iw~x,t !#,

b5b0F t
2exp@ iw212iw~x,t !#, ~9!

a0
25@2~D18D282D19D29!~«4220«219!

115~D18D291D19D28!~3«2«3!#/G2,
~10!

b0
25uD1u2~«4113«2136!/4G2,

tan~w222w1!5
D19~62«2!25D18«

D18~62«2!15D19«
. ~11!

Thus, Eqs.~10! and ~11! determine the amplitudes and th
constant part of the relative phase difference of the t
fields.

Now to find functionsw(x,t) and F(x,t) we have four
Eqs.~6! and~7!. Substitution of Eq.~9! into Eq.~6! leads~i!
to the expression for the phase

w~x,t !5m ln F t1w0~x!,
~12!

m55D18/2D19 ,

wherew0(x) is an arbitrary function that will be determine
later; ~ii ! to the condition of compatibility of Eqs.~6a! and
~6b!,

2D18/D195D28/D29 ; ~13!

and ~iii ! to two equations forF(x,t),

D19~Fx1dF t!15uD1u2F tt50, ~14a!

D29~Fx2dF t!15uD2u2F tt50. ~14b!

Before analyzing the solutions of the system~14! we con-
sider the equations that are consequences of the system~7!.
Substituting Eq.~9! into Eq. ~7! we arrive at

~k11 ig12w0x
!F t

21D1~11 im!~21 im!F tt
2

22D1~21 im!2F tF ttt50, ~15a!

~k21 ig222w0x
!F t

212D2~11 im!~112im!F tt
2

28D1~11 im!2F tF ttt50. ~15b!

Introducing the new functionF5F tt /F t it is easy to show
that Eq.~15a! has a solution of the form

F~x,t !5c1~x!1c2~x!eFt, ~16!

whereF is a constant determined by the imaginary part
Eq. ~15a!,

F254g1D19/~25uD1u22D19
2!.0, ~17!

whereas the real part of Eq.~15a! gives

w5Q1x,

Q15k11g1D18~25uD1u21D19
2!/D19~25uD1u22D19

2!.

~18!
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The compatibility condition of Eqs.~15a! and ~15b! yields

g1D19~25uD2u22D29
2!5g2D29~25uD1u22D19

2!, ~19!

k222k15
D28F

2

4D29
F25S uD2u2

D29
2

uD1u2

D19
D 1D292D19G , ~20!

where relation~13! was used.
Now we come back to Eq.~14!. Substituting Eq.~16! into

Eq. ~14! we find that the common solution to Eqs.~14! and
~15! has the form

F~x,t !5c01ceF~ t2x/V!, ~21!

wherec0 and c are constants, which can be equalized b
proper choice of the reference pointsx0 and t0 , and

V215~5FuD1u21d!/D195~5FuD2u22d!/D29 . ~22!

The second equality in Eq.~22! arising from the compatibil-
ity condition for Eqs.~14a! and~14b! shows that the solution
exists if the condition

d55F~D19uD2u22D29uD1u2!/~D291D19! ~23!

holds. By using Eq.~23! the expression for velocity~22! can
be rewritten in the form

V2155F~ uD2u21uD1u2!/~D291D19!. ~24!

For zero walk-off instead of Eq.~23! an additional relation
for coefficientsD1,2,

D19uD2u25D29uD1u2 ~25!

emerges. Eventually the solution of the system~1! is given
by

A5A0@11e2F~ t2x/V!#221 i«ei ~Vt2Qx!1 iw1,

B5B0@11e2F~ t2x/V!#2212i«e2i ~Vt2Qx!1 iw2,
~26!

where A05a0F2, B05b0F2, V5(m1«)F, Q5Q1
1 (m1«)F/V, parametersa0 , b0 , F, Q1 , andV are given
by expressions~10!, ~17!, ~18!, and~22!, respectively. Thus
Eq. ~26! represents the solution of system~1! with fixed val-
ues of velocity and amplitudes of both harmonics. It is cle
that forF.0 in the limit t2x/V→2` both amplitudes tend
to zero, whereas in the limitt2x/V→` we obtain nonzero
excitations,A→A0 , B→B0 . The solution~26! exists if the
parameters of system~1! satisfy the relations~13!, ~19!, ~20!,
and~23!. Note that transformationst→t2t0 , x→x2x0 , and
w1→w11w0 , w2→w212w0 in Eq. ~26! leads to the solu-
tion of Eq. ~1! as well.

Now two comments are in order. As follows from Eq
~17! and ~19! the inequalitiesg1,2D1,29 .0 have to be satis
fied. In other words, sgn(g1,2)5sgn(D1,29 ), which is a physi-
a

r

cally obvious condition because the system has to exhib
balance between gain and losses to sustain a stationary
tion.

The second comment is that Eq.~8! in general can have
up to four real solutions. If they are consistent with Eq.~10!
one set of system parameters admits several coexis
shocklike solutions.

Accounting for the relation~13!, Eq. ~8! can be rewritten
as

2d~«4220«219!15~2d21!~«323«!50, ~27!

whered5D18/D19 . For instance, in the cased50.5 Eq.~27!
is reduced to a biquadratic equation and has four real s
tions: « i56@106A91#1/2. Analysis of Eq. ~10! shows
that a0i

2 510D19D29(3« i2« i
3)/G2.0 and therefore there

are two pairs of solutions with«152@101A91#1/2, «2

5@102A91#1/2 and«352@102A91#1/2, «45@101A91#1/2.
For the former case we have sgn(D19)5sgn(D29), while for the
latter sgn(D19)52sgn(D29).

Another particular case we consider here is t
dispersionless limitd50. Then solutions to Eq.~27! are«1

50, «2,356). For «150 we havea01
2 5218D19D29/G

2,
i.e., a solution exists provided that sgn(D19)52sgn(D29),
while for «2,3

2 53, a02
2 5a03

2 584D19D29/G
2, and two signs of«

correspond to the coexistence of the two complex conjug
solutions. Along with these relations, Eqs.~17!–~20! lead to
F25g1/6D195g2/6D29 , Q15k1 , k252k1 . The last equality
means that in the dispersionless limit solutions exist at z
mismatch.

We have confirmed the results obtained by direct num
cal simulations of the Eq.~1!. In Fig. 1 the dynamics of the
shock wave is shown for the system parametersD185D28
50, D195D2950.1, d50, g15g250.2, «5). A rather
stable propagation of the shock wave with amplitudes, re
tive phase, velocity, and shape described by the formu
~10!, ~11!, ~24!, and~26!, respectively, is clearly seen.

In conclusion, we have analytically found the profile of
shock front formed by the interaction of the fundamental a
the second harmonic waves in nonconservative quadr
media. Due to mutual trapping the FW and the SH comp
a bound state and move with a common velocity even in
case of nonzero walk-off. It is shown that for a set of para
eters characterizing dispersive, nonlinear, dissipative,
amplifying properties of the system several shocklike wa
can exist. An important problem that remains beyond
scope of this Rapid Communication is the stability of t

FIG. 1. Evolution of the shock wave. Amplitude of the fund
mental waveA is shown, while the SH field demonstrates a simi
behavior.
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found solutions. Numerical calculations showed that at le
for particular set of the system parameters shock wa
propagate rather stable. A detailed analysis of the stabilit
the shock waves, in particular, modulational instability of t
plane waves which are the asymptotic states of the solut
~26!, will be considered elsewhere. Such shock waves ca
um

es

ed

,

st
s

of

ns
be

observed experimentally if long pulses with sharp fronts
launched in a dissipative quadratic medium.
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